人工智能军备竞赛在国内外持续迭代演进。揭秘OpenAI、何突谷歌、破软瓶颈微软、硬件阿里巴巴等不断推出新应用,科创MCP协议、揭秘AI编程、何突具身智能机器人、破软瓶颈芯片自研等场景多样拓展。硬件自从年初引起全球震动并激发诸多领域AI变革以来,科创DeepSeek的揭秘一举一动都备受关注,但其最新R2模型千呼万唤仍未推出。何突
5月14日,破软瓶颈DeepSeek团队发表最新论文,硬件解释其DeepSeek-V3模型在硬件架构和模型设计方面的科创关键创新,公开大规模训练和推理的降本秘诀,令人瞩目的效率突破是如何做到的,又给业内很大启发。
这篇发表在arXiv平台的论文Insights into DeepSeek-V3:Scaling Challenges and Reflections on Hardware for AI Architectures,DeepSeek创始人兼CEO梁文锋出现在合著名单中。
相较此前的DeepSeek-V3技术报告,本篇论文的重点不在算法,而是从硬件架构和模型设计双重视角出发,探讨了硬件和模型两者如何相互配合,以实现低成本的大规模训练和推理,主要涵盖五方面内容,包括DeepSeek模型的设计原则、低精度驱动设计、以互联为驱动的设计、大规模网络驱动设计、面向未来的硬件架构设计。
论文重点介绍了多头潜在注意力(MLA)以提高内存效率、混合专家(MoE)架构以优化计算与通信权衡、FP8混合精度训练以充分发挥硬件潜力,以及多平面网络拓扑以最小化集群级网络开销等关键创新,还为未来AI硬件与模型协同设计提出了建议。
大模型的迅猛扩张暴露了硬件的架构瓶颈:内存容量不足、计算效率低下、互连带宽受限等。DeepSeek研究团队通过基础设施与算法团队的深度合作,开发了一个适用于MoE模型的FP8混合精度训练框架。在混合精度训练中,模型的权重和激活值可以使用FP8进行计算,而关键的梯度计算和优化步骤则使用更高的精度(如FP32)来保证训练的稳定性,从而在不损失模型性能的前提下,充分发挥硬件的计算能力,加速训练过程,降低训练成本和内存占用。
论文披露了对通信架构的重构。DeepSeek提出多平面双层胖树网络(MPFT),将传统三层网络拓扑压缩为两层,通过8个独立网络平面实现流量隔离和成本下降。这是DeepSeek首次披露超大规模集群的网络优化方案。
他们还提出了未来硬件架构设计的前瞻性方
评论列表
厦门海关查获74吨废塑料膜 。洪佳盛摄海峡网讯 (厦门网记者 沈伟彬 通讯员 洪佳盛) 8月29日,经专门机构鉴定,厦门海关此前查获的约74吨“聚酯薄膜(库存级)”属于我国限制
2025-08-28 11:48中国制造一直以来都笼罩在粗制滥造,山寨成风的一个阴影下,然而今天,中国的家具制造行业正在蜕变,民族企业正在崛起,虽然于大环境而言,低劣的品质、粗滥的制造、山寨的设计、不环保的用材依然随处可见,但可
2025-08-28 10:49在面临家里装修时,很多人都会徘徊于众多的沙发种类之间,其中,实木沙发作为质量比较好,较为高档美观的沙发吸引了不少人的目光...那今天就给大家讲下如何选购实木沙发首先,实木沙发的选购需要一点专业知识。它
2025-08-28 10:012018年6月19日消息,泡菜女团apink门面孙娜恩的脸好像有点变化,孙娜恩整容的消息也是不胫而走。众所周知,孙娜恩身高168厘米,体重46公斤,不少粉丝做梦都想有这种前凸后翘的身材,该有肉的地方有
2025-08-28 09:51